本文全文转载自:arduino学习笔记37 – Arduino Uno + MPU6050首例整合性6轴演示实验(极客工坊论坛),本文对板式稍作了修改。
MPU6050的资料也可以在这里下载到,包含了Arduino的例子。下载GY521mpu-6050资料
Arduino.cc网站给出的详细资料地址:http://playground.arduino.cc/Main/MPU-6050
——————————————————————————
经过和lucsong 一起学习了几天时间,慢慢的有些了解MPU6050这个6轴的姿态模块,现在决定整理一下这个模块与Arduino的结合使用方法!(如有错误麻烦请指出,谢谢!)
Mpu6050为全球首例整合3轴陀螺仪、3轴加速器、含9轴融合演
MPU-6000为全球首例整合性6轴运动处理组件,相较于多组件方案,免除了组合陀螺仪与加速器时之轴间差的问题,减少了大量的包装空间。MPU-6000整合了3轴陀螺仪、3轴加速器,并含可藉由第二个I2C端口连接其他厂牌之加速器、磁力传感器、或其他传感器的数位运动处理(DMP: Digital Motion Processor)硬件加速引擎,由主要I2C端口以单一数据流的形式,向应用端输出完整的9轴融合演算技术。
InvenSense的运动处理资料库,可处理运动感测的复杂数据,降低了运动处理运算对操作系统的负荷,并为应用开发提供架构化的API。
MPU-6000的角速度全格感测范围为±250、±500、±1000与±2000°/sec (dps),可准确追緃快速与慢速动作,并且,用户可程式控制的加速器全格感测范围为±2g、±4g±8g与±16g。产品传输可透过最高至400kHz的I2C或最高达20MHz的SPI。
MPU-6000可在不同电压下工作,VDD供电电压介为2.5V±5%、3.0V±5%或3.3V±5%,逻辑接口VVDIO供电为1.8V± 5%。MPU-6000的包装尺寸4x4x0.9mm(QFN),在业界是革命性的尺寸。其他的特征包含内建的温度感测器、包含在运作环境中仅有±1%变动的振荡器。
应用
运动感测游戏
现实增强
电子稳像 (EIS: Electronic Image Stabilization)
光学稳像(OIS: Optical Image Stabilization)
行人导航器
“零触控”手势用户接口
姿势快捷方式
认证市场
智能型手机
平板装置设备
手持型游戏产品
游戏机
3D遥控器
可携式导航设备
特征
1、以数字输出6轴或9轴的旋转矩阵、四元数(quaternion)、欧拉角格式(Euler Angle forma)的融合演算数据。
2、具有131 LSBs/°/sec 敏感度与全格感测范围为±250、±500、±1000与±2000°/sec 的3轴角速度感测器(陀螺仪)。
3、可程式控制,且程式控制范围为±2g、±4g、±8g和±16g的3轴加速器。
4、移除加速器与陀螺仪轴间敏感度,降低设定给予的影响与感测器的飘移。
5、数字运动处理(DMP: Digital Motion Processing)引擎可减少复杂的融合演算数据、感测器同步化、姿势感应等的负荷。
6、运动处理数据库支持Android、Linux与Windows
7、内建之运作时间偏差与磁力感测器校正演算技术,免除了客户须另外进行校正的需求。
8、以数位输出的温度传感器
9、以数位输入的同步引脚(Sync pin)支援视频电子影相稳定技术与GPS
10、可程式控制的中断(interrupt)支援姿势识别、摇摄、画面放大缩小、滚动、快速下降中断、high-G中断、零动作感应、触击感应、摇动感应功能。
11、VDD供电电压为2.5V±5%、3.0V±5%、3.3V±5%;VDDIO为1.8V± 5%
12、陀螺仪运作电流:5mA,陀螺仪待命电流:8A;加速器运作电流:8A,加速器省电模式电流: 8A@10Hz
13、高达400kHz快速模式的I2C,或最高至20MHz的SPI串行主机接口(serial host interface)
14、内建频率产生器在所有温度范围(full temperature range)仅有±1%频率变化。
15、使用者亲自测试
16、10,000 g 碰撞容忍度
17、为可携式产品量身订作的最小最薄包装 (4x4x0.9mm QFN)
18、符合RoHS及环境标准MPU-6000为全球首例整合性6轴运动处理组件,相较于多组件方案,免除了组合陀螺仪与加速器时之轴间差的问题,减少了大量的包装空间。MPU-6000整合了3轴陀螺仪、3轴加速器,并含可藉由第二个I2C端口连接其他厂牌之加速器、磁力传感器、或其他传感器的数位运动处理(DMP: Digital Motion Processor)硬件加速引擎,由主要I2C端口以单一数据流的形式,向应用端输出完整的9轴融合演算技术
InvenSense的运动处理资料库,可处理运动感测的复杂数据,降低了运动处理运算对操作系统的负荷,并为应用开发提供架构化的API。
MPU-6000的角速度全格感测范围为±250、±500、±1000与±2000°/sec (dps),可准确追緃快速与慢速动作,并且,用户可程式控制的加速器全格感测范围为±2g、±4g±8g与±16g。产品传输可透过最高至400kHz的I2C或最高达20MHz的SPI。
MPU-6000可在不同电压下工作,VDD供电电压介为2.5V±5%、3.0V±5%或3.3V±5%,逻辑接口VVDIO供电为1.8V± 5%。MPU-6000的包装尺寸4x4x0.9mm(QFN),在业界是革命性的尺寸。其他的特征包含内建的温度感测器、包含在运作环境中仅有±1%变动的振荡器。
从MPU6050的技术文档里我们可以看得出来一些重要参数出来!如果比例数是多少,芯片的特性都是可以看得出来的!
下面可以看一下以下几个图片,这样你也许会了解一些!
第一张是MPU6000与MPU6050芯片的比较!
第二张是MPU6000与MPU6050芯片的最小驱动电路的连接!
第三张是陀螺仪的设计规范表格!
第四张是加速度的设计规范表格!
如果您需要更多的知识,请翻看MPU6050的英文技术文档,里面已经写的很清楚了,还有中文文档,最近在准备进行翻译,稍后有中午的话也会给大家贴出!
下面是arduino与MPU6050的小模块的连线图:
A4接SDA A5接SCL vcc接3v3商家说可以接5v但是保守起见还是接了3.3v GND接GND
不过mpu受温度的影响精度相差比较大!
注意:本模块采用的是IIC通信方式,所以我们只需要连接四跟线就可以完成电路的连接,简单方便!
1.关于6050 陀螺仪和加速度计 的角速度和角度计算。
A.陀螺仪角度计算,很多帖子中都提到了用的是积分,但是我这里还是重新讲下。
angle_n = angle_n-1 + (Gyro-C_Gyro)*R_Gyro;
(1)angle_n 当前角度值,它的单位是度(°)
(2)angle_n-1 上一次计算出的角度值
(3)Gyro 陀螺仪敏感轴偏转值,也就是当前敏感轴读数
(4)C_Gyro 陀螺仪零点偏移值,这个值的测量方法是:将陀螺仪敏感轴水平放置静止时的读数,我的零点偏移值是水平、垂直、倒置,分别取1024次,作平均值得出的,读数是-177.8865041,但是最后在程序实践中,调整到-99.90。或许还有别的办法,自己看着办吧。
(5)R_Gyro 是陀螺仪比例。飞思卡尔的参考中提到这个值是可以计算出来的,下面我会提供下载,大家自己去看看怎么算的,但是在其论坛和调试手册中都提到,这个比例值还是实验法测量出来的比较准确。
B.加速度仪 角度计算。
加速度仪的角度计算有很多方法,论坛里就有2中。但是都用到了三角函数,数学没学好,照抄了也不行。参考了飞思卡尔的计算方法后大概是这样的。
Angle_Z = (az-C_Z)*R_Z;
(1)angle_z 加速度计敏感轴Z轴产生倾角计算出的角度,单位度(°)
(2)az 是加速度仪 Z轴读数
(3)C_Z Z轴零点偏移量 测量方法和陀螺仪的一样。
(4)R_Z 加速度计Z轴比例
C.反复试验,MPU6050加速度计Z轴对应的是陀螺仪的X轴。不知道是不是我的有问题,还是就这么设计的?
接着就是提供一下测试代码给大家玩玩,方便测试!
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 |
// I2C device class (I2Cdev) demonstration Arduino sketch for MPU6050 class // 10/7/2011 by Jeff Rowberg <jeff@rowberg.net> // Updates should (hopefully) always be available at https://github.com/jrowberg/i2cdevlib // // Changelog: // 2011-10-07 - initial release /* ============================================ I2Cdev device library code is placed under the MIT license Copyright (c) 2011 Jeff Rowberg Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. =============================================== */ // Arduino Wire library is required if I2Cdev I2CDEV_ARDUINO_WIRE implementation // is used in I2Cdev.h #include "Wire.h" // I2Cdev and MPU6050 must be installed as libraries, or else the .cpp/.h files // for both classes must be in the include path of your project #include "I2Cdev.h" #include "MPU6050.h" // class default I2C address is 0x68 // specific I2C addresses may be passed as a parameter here // AD0 low = 0x68 (default for InvenSense evaluation board) // AD0 high = 0x69 MPU6050 accelgyro; int16_t ax, ay, az; int16_t gx, gy, gz; #define LED_PIN 13 bool blinkState = false; void setup() { // join I2C bus (I2Cdev library doesn't do this automatically) Wire.begin(); // initialize serial communication // (38400 chosen because it works as well at 8MHz as it does at 16MHz, but // it's really up to you depending on your project) Serial.begin(9600); // initialize device Serial.println("Initializing I2C devices..."); accelgyro.initialize(); // verify connection Serial.println("Testing device connections..."); Serial.println(accelgyro.testConnection() ? "MPU6050 connection successful" : "MPU6050 connection failed"); // configure Arduino LED for pinMode(LED_PIN, OUTPUT); } void loop() { // read raw accel/gyro measurements from device accelgyro.getMotion6(&ax, &ay, &az, &gx, &gy, &gz); // these methods (and a few others) are also available //accelgyro.getAcceleration(&ax, &ay, &az); //accelgyro.getRotation(&gx, &gy, &gz); // display tab-separated accel/gyro x/y/z values Serial.print("a/g:\t"); Serial.print(ax); Serial.print("\t"); Serial.print(ay); Serial.print("\t"); Serial.print(az); Serial.print("\t"); Serial.print(gx); Serial.print("\t"); Serial.print(gy); Serial.print("\t"); Serial.println(gz); // blink LED to indicate activity blinkState = !blinkState; digitalWrite(LED_PIN, blinkState); } |
以上这个代码是没有添加算法的,所以显示的是只是原始数据!
我们可以通过串口监视串口可以看到这样的结果!
第二个测试代码是加了简简单单的算法之后的!其实很简单,看技术文档就可以了!
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 |
#include "Wire.h" #include "I2Cdev.h" #include "MPU6050.h" MPU6050 accelgyro; int16_t ax, ay, az; int16_t gx, gy, gz; bool blinkState = false; void setup() { Wire.begin(); Serial.begin(9600); accelgyro.initialize(); } void loop() { accelgyro.getMotion6(&ax, &ay, &az, &gx, &gy, &gz); Serial.print("a/g:\t"); Serial.print(ax / 16384); Serial.print("\t"); Serial.print(ay / 16384); Serial.print("\t"); Serial.print(az / 16384); Serial.print("\t"); Serial.print(gx / 131); Serial.print("\t"); Serial.print(gy / 131); Serial.print("\t"); Serial.println(gz / 131); blinkState = !blinkState; } |
以上的结果有些偏差,原因是没有经过校正的,这个只是给大家提供参考,希望对您有所帮助谢谢!
另外有什么问题,也可以去翻看lucsong的,关于MPU6050的调试帖子,里面还是有些重要的东西哦!
下面是MPU6050的因为文档,中文还在找时间翻译。
不经过同意,请勿转载,谢谢!
添加实验时的文件相关库: I2Cdev.zip (10.85 KB) , MPU6050.zip (31.47 KB)
-
PS-MPU-6000A[1].pdf(1.6 MB)