理论物理:拓扑场论和二维量子引力【转载】

理论物理:拓扑场论和二维量子引力【转载】

全文转载自知乎:拓扑场论和二维量子引力 – 知乎 (zhihu.com)


1. 引言

过去几年见证了量子场论技术在研究各种数学问题上丰硕的应用。这个主要归功于Edward Witten的项目,已经找到了量子场论和拓扑与几何量间意想不到的关联。这点的精彩范例是,三维规范理论和二维共形场论中出现了像Jones多项式这样的纽结不变量[1]。直到最近,这些发展也主要是带给我们,要么是新的数学上的不变量,要么是对从量子场论的直觉得到的结果的更好理解。用在这些构造中的量子场论,虽然是更物理的场论的近亲,但没有直接的物理应用。

随着对矩阵模型和一般的二维量子引力的研究,意想不到的转机出现了。一个称为拓扑引力[2]的特殊场论,最初被构造来处理Riemann面模空间的问题,被证明与二维量子引力有密不可分的关联。可将它看成引力的另一个更简单的相,其中关联函数更容易计算。借助矩阵模型在二维引力中取得重大突破[3]后不久,Witten指出量子引力可能不过是拓扑引力的简单微扰[4]。这点现在已经有了坚实的证据,提供了从拓扑引力开始得到所有矩阵模型结果的相当直接的方法[4][5][6][7][8][9]。拓扑引力有个推广,称为拓扑弦论,其中引力与各种物质系统耦合[4]。拓扑弦论可用于描述和解与引力耦合的所有 [公式] 极小模型,以及很多其它理论[10][11][12][13]

这份讲义旨在对一般的拓扑场论,特别是拓扑引力进行初步介绍。我们的最终目标,是建立起与矩阵模型结果的关联,特别是可积的KdV型层次结构[14][15]的出现。不过,最后一节才会涉及这点。沿途我们将讨论几何,代数和量子场论间诸多优美的关联。

这份讲义中,描述与E. 和H. Verlinde,以及与E. Witten合作的工作的部分,将基本照着同一主题其它已出版的讲义[16],但有些地方可能更加友好。这份讲义会和在冬季学校讲的四节课高度一致,也是依此来组织的。在第2节,我们讨论拓扑场论的一些一般性质。我们强调因子化的概念,并应用于二维情形。在第3节,我们考虑拓扑共形场论,它们与 [公式] 超对称模型密切相关,并为上节的抽象讨论提供一些例子。拓扑引力放在第4节,那里我们还将用递归关系讨论它的解。最后,在第5节,我们讨论与矩阵模型和可积KdV层次结构的关联。

物理学:Does Time Really Flow? New Clues Come From a Century-Old Approach to Math.

本文转载自:

Does Time Really Flow? New Clues Come From a Century-Old Approach to Math.

The laws of physics imply that the passage of time is an illusion. To avoid this conclusion, we might have to rethink the reality of infinitely precise numbers.

If numbers cannot have infinite strings of digits, then the future can never be perfectly preordained.

Dave Whyte for Quanta Magazine

Strangely, although we feel as if we sweep through time on the knife-edge between the fixed past and the open future, that edge — the present — appears nowhere in the existing laws of physics.

读书+物理学:Making Sense of Quantum Mechanics(pdf)

Making Sense of Quantum Mechanics —— A much needed book by a leading figure in quantum foundations

读书+物理学:Making Sense of Quantum Mechanics(pdf)

这本书的电子版售价为41,64 € ,但是可以根据其DOI号下载到免费版,DOI号是 10.1007/978-3-319-25889-8

Science Hub 搜索后的链接是:http://libgen.io/book/index.php?md5=B0EC4AA6C1B31CB9454E3823DF2AB07D

比如在这里可以下载:https://ambry.pw/item/detail/id/1468024?id=1468024

查看全文在线阅读