WordPress技术:我用回了七牛云及WordPress使用七牛云的方法
密码保护:IDEA!:一种机器人脸及表情的网页版
这是一个转型AI的励志故事,从非科班到拿下竞赛一等奖[转载]
本文大概描述了机器学习领域之外的人如何转行到机器学习领域内。说得很详细。
下文转载自CSDN:http://blog.csdn.net/qq_40027052/article/details/78542679?locationNum=3&fps=1
在计算机行业,关于从业人员的素质,一直都有一个朴素的认识——科班出身好过非科班,学历高的好过学历低的。大部分时候,这个看法是对的。在学校学习,有老师指点,有同学讨论,有考试压迫,有项目练手。即便不大用心的学生,几年耳濡目染下来,毕业后作为半个专业人士,还是没什么问题的。
不过,量子物理告诉我们,这个世界的本质要看概率。所以,科班出身的同学,在技术上好过非科班出身的同学,这是大概率事件;相反,非机器学习专业,甚至非计算机专业的同学,在这个领域做的比本专业同学更好,则就是小概率事件了。但小概率事件并非“不可能事件”,国内很多做机器学习公司的CTO,都不是机器学习专业的科班出身,却能够抓住这里的“小概率”,让自己华丽地转身并实现弯道超车。
他们是怎么做到的?
如果在上学的时候,我们没能嗅到机器学习领域的机会,而是选择其他领域来学习和工作……如今却打算半路出家、改行机器学习,应该怎么做,才能做到跟这些人一样好?或者,至少是足够好?
我自己痛苦转型的经历,说出来可以供大家参考一下。
我也是非科班出身,但因为工作,一直需要接触计算机视觉的一些传统算法。后来,看到ImageNet竞赛的结果,我意识到了深度学习在视觉领域的巨大优势,遂决定开始转型深度学习和神经网络,走上了这条学习的不归路(笑)。
想要转型,跟上学的时候不同,因为手头正在做的工作意味着,自己需要从没有时间的情况下挤出时间,需要把别人睡觉、打游戏的时间用来学习,而所学的又是一种颇为艰深晦涩的学问。
转型,其实很容易,需要做到的只有一件事:学习。
转型,其实很困难,因为必须做到一件事:坚持学习。
最难的不是下定决心,而是贯彻到底。所以,在开始之前,不妨先问问自己这样几个问题:
“我真的已经想清楚,要踏足这个行业吗?”
“我能够付出比其他人更多的辛苦汗水,在这条路上坚定地走下去吗?”
“在遭受了痛苦甚至打击之后,我对机器学习的热爱,仍然能够维持我继续前进吗?”
根据我掌握的数据,100个程序员里大概有30个考虑过转型,而真正付诸行动的不过10个。一个月以后仍然在坚持的仅有5个,最终能完成第一个阶段学习的,最多两三个而已。
真的这么困难吗?是的。特别是你要白天上班,晚上才能学习,独学而无友,有问题又只能自己查。而要系统地入门,又不是咬牙一天两天就能学出来,恐怕得坚持几个月才能get到点。
我个人的经历是这样:一开始接触时,每周一、三、五固定3天时间,每晚花两个小时去学习、看视频、翻书,周六周日则用来完成课程附带的编程作业,大概也是每天两小时左右。在这种强度下坚持了三个月,我才算是完成了入门的第一步。
也许有的人效率更高一些,也许有的人步子更慢一些,但快和慢不是关键,即使学习最慢的人,也要比一开始放弃学习的人走得更远。
所以,其实真正重要的,不是“我该学什么”,或者“我该怎么学”;而是“我是不是真的有足够的决心”,以及“我是不是能坚持到底”。
上手的课程
定好决心后,我们就能看看:在学机器学习的时候,我们到底在学什么?
几乎所有人都知道人工智能这个概念;有一部分人知道“机器学习”这个概念;其中一小部分人能清楚描述“深度学习”、“机器学习”和“神经网络”的关系; 很少一部分人能够正确说明“卷积”、“池化”、“CTC”这些名词的正确含义与计算/实现的方法;非常少的人能清楚地理解损失函数和反向传播的数学表达;极少极少的人能够阐述网络的一个修改(比如把卷积核改小)对precision/recall会产生什么影响;几乎没有人能描述上述影响到底是什么原理。