物理学:一文读懂量子纠缠【转载】

本文转载自知乎:一文读懂量(xiang)子(ai)纠(xiang)缠(sha)

英文原文1:Entanglement Made Simple

英文原文2:Your Simple (Yes, Simple) Guide to Quantum Entanglement


量子纠缠及其“多世界”诠释都带有一种神秘而迷人的光环。然而,这些都是,或者都应该是科学观点,它们都有实实在在的具体含义。在下面这篇文章中,我们将尽可能简单明了地为大家解释一下量子纠缠和多世界的概念。

纠缠:从经典迈入量子

量子纠缠经常被看作量子力学才独有的现象,但事实并不是这样。实际上,我们可以首先通过思考一个简单的非量子(或者“经典”)现象来考察纠缠,这是一种比较反传统的做法。这样可以让我们绕开量子论中纠缠的怪异之处来体会量子纠缠的精妙。

一个系统由两个子系统组成,纠缠发生在我们对系统的状态有部分了解的情况下。我们将子系统称之为c-on。“c”的意思是“经典的”,为了便于理解,我们把c-on看作蛋糕。

这里我们的蛋糕有两种形状,正方形或者圆形。那么两个蛋糕的总状态就有4种,它们分别是(方,方)(方,圆)(圆,方)(圆,圆)。下面两个表格给出了在四个状态中找到某一个状态的概率。

当我们不能通过一个蛋糕的信息来判断另一个蛋糕的状态时,我们称这两个子系统是独立的。我们的第一个表格就具有这种特性。即使我们知道第一个蛋糕是方的,我们仍然不知道另一个的形状。类似的,第二个子系统的形状并不能告诉我们关于第一个子系统形状的任何有用信息。

另一方面,如果一个蛋糕的信息可以增加我们对另一个蛋糕的认识,我们就说这两个蛋糕是纠缠的。第二个表格中的情况就表现出高度的纠缠。在这种情况中,如果我们已经知道第一个蛋糕是圆的,那么我们就知道第二个蛋糕一定也是圆形的。如果第一个蛋糕是方形的,第二个也是。当我们知道了第一个蛋糕的形状我们就能确定另一个蛋糕的形状。

物理学:论动体的电动力学-英文版【转载】

转载自:http://www.fourmilab.ch/etexts/einstein/specrel/www/

pdf版本下载:PDF

还有Latex源代码,PostScript格式的下载: LaTeX SourcePostScript


ON THE ELECTRODYNAMICS
OF MOVING BODIES

By A. Einstein
June 30, 1905

It is known that Maxwell’s electrodynamics—as usually understood at the present time—when applied to moving bodies, leads to asymmetries which do not appear to be inherent in the phenomena. Take, for example, the reciprocal electrodynamic action of a magnet and a conductor. The observable phenomenon here depends only on the relative motion of the conductor and the magnet, whereas the customary view draws a sharp distinction between the two cases in which either the one or the other of these bodies is in motion. For if the magnet is in motion and the conductor at rest, there arises in the neighbourhood of the magnet an electric field with a certain definite energy, producing a current at the places where parts of the conductor are situated. But if the magnet is stationary and the conductor in motion, no electric field arises in the neighbourhood of the magnet. In the conductor, however, we find an electromotive force, to which in itself there is no corresponding energy, but which gives rise—assuming equality of relative motion in the two cases discussed—to electric currents of the same path and intensity as those produced by the electric forces in the former case.

Examples of this sort, together with the unsuccessful attempts to discover any motion of the earth relatively to the “light medium,” suggest that the phenomena of electrodynamics as well as of mechanics possess no properties corresponding to the idea of absolute rest. They suggest rather that, as has already been shown to the first order of small quantities, the same laws of electrodynamics and optics will be valid for all frames of reference for which the equations of mechanics hold good.1 We will raise this conjecture (the purport of which will hereafter be called the “Principle of Relativity”) to the status of a postulate, and also introduce another postulate, which is only apparently irreconcilable with the former, namely, that light is always propagated in empty space with a definite velocity c which is independent of the state of motion of the emitting body. These two postulates suffice for the attainment of a simple and consistent theory of the electrodynamics of moving bodies based on Maxwell’s theory for stationary bodies. The introduction of a “luminiferous ether” will prove to be superfluous inasmuch as the view here to be developed will not require an “absolutely stationary space” provided with special properties, nor assign a velocity-vector to a point of the empty space in which electromagnetic processes take place.

The theory to be developed is based—like all electrodynamics—on the kinematics of the rigid body, since the assertions of any such theory have to do with the relationships between rigid bodies (systems of co-ordinates), clocks, and electromagnetic processes. Insufficient consideration of this circumstance lies at the root of the difficulties which the electrodynamics of moving bodies at present encounters.

 

I. KINEMATICAL PART

§ 1. Definition of Simultaneity

Let us take a system of co-ordinates in which the equations of Newtonian mechanics hold good.2 In order to render our presentation more precise and to distinguish this system of co-ordinates verbally from others which will be introduced hereafter, we call it the “stationary system.”

If a material point is at rest relatively to this system of co-ordinates, its position can be defined relatively thereto by the employment of rigid standards of measurement and the methods of Euclidean geometry, and can be expressed in Cartesian co-ordinates.

If we wish to describe the motion of a material point, we give the values of its co-ordinates as functions of the time. Now we must bear carefully in mind that a mathematical description of this kind has no physical meaning unless we are quite clear as to what we understand by “time.” We have to take into account that all our judgments in which time plays a part are always judgments of simultaneous events. If, for instance, I say, “That train arrives here at 7 o’clock,” I mean something like this: “The pointing of the small hand of my watch to 7 and the arrival of the train are simultaneous events.”3

It might appear possible to overcome all the difficulties attending the definition of “time” by substituting “the position of the small hand of my watch” for “time.” And in fact such a definition is satisfactory when we are concerned with defining a time exclusively for the place where the watch is located; but it is no longer satisfactory when we have to connect in time series of events occurring at different places, or—what comes to the same thing—to evaluate the times of events occurring at places remote from the watch.

We might, of course, content ourselves with time values determined by an observer stationed together with the watch at the origin of the co-ordinates, and co-ordinating the corresponding positions of the hands with light signals, given out by every event to be timed, and reaching him through empty space. But this co-ordination has the disadvantage that it is not independent of the standpoint of the observer with the watch or clock, as we know from experience. We arrive at a much more practical determination along the following line of thought.

If at the point A of space there is a clock, an observer at A can determine the time values of events in the immediate proximity of A by finding the positions of the hands which are simultaneous with these events. If there is at the point B of space another clock in all respects resembling the one at A, it is possible for an observer at B to determine the time values of events in the immediate neighbourhood of B. But it is not possible without further assumption to compare, in respect of time, an event at A with an event at B. We have so far defined only an “A time” and a “B time.” We have not defined a common “time” for A and B, for the latter cannot be defined at all unless we establish by definition that the “time” required by light to travel from A to B equals the “time” it requires to travel from B to A. Let a ray of light start at the “A time” $t_{\rm A}$from A towards B, let it at the “B time” $t_{\rm B}$ be reflected at B in the direction of A, and arrive again at A at the “A time” $t'_{\rm A}$.

In accordance with definition the two clocks synchronize if

\begin{displaymath}t_{\rm B}-t_{\rm A}=t'_{\rm A}-t_{\rm B}. \end{displaymath}

We assume that this definition of synchronism is free from contradictions, and possible for any number of points; and that the following relations are universally valid:—

  1. If the clock at B synchronizes with the clock at A, the clock at A synchronizes with the clock at B.
  2. If the clock at A synchronizes with the clock at B and also with the clock at C, the clocks at B and C also synchronize with each other.

Thus with the help of certain imaginary physical experiments we have settled what is to be understood by synchronous stationary clocks located at different places, and have evidently obtained a definition of “simultaneous,” or “synchronous,” and of “time.” The “time” of an event is that which is given simultaneously with the event by a stationary clock located at the place of the event, this clock being synchronous, and indeed synchronous for all time determinations, with a specified stationary clock.

In agreement with experience we further assume the quantity

\begin{displaymath}\frac{2{\rm AB}}{t'_A-t_A}=c, \end{displaymath}

to be a universal constant—the velocity of light in empty space.

It is essential to have time defined by means of stationary clocks in the stationary system, and the time now defined being appropriate to the stationary system we call it “the time of the stationary system.”