前两天在家分别计算了Vaidya黑洞的apparent horizon和event horizon的熵,得到了结果。但是吴老师建议凑一下热点,将Massive Gravity加入到Vaidya中试试,于是今天(10月3日)在arXiv上看到两篇文章,有点意思。

 

第一篇和我正在算的Vaidya黑洞熵有关。最近Massive gravity很火,可以将它与Vaidya结合起来进行计算。

这篇文章名是 Vaidya Spacetime in Massive Gravity’s Rainbow,其中得到了Vaidya的度规,但我感觉有些繁琐。

于是看到了Holographic Thermalization and Generalized Vaidya-AdS Solutions in Massive Gravity 这篇文章,它给出了清晰的解和度规,计算起来很方便了。

第二篇与我所做的工作无直接关系,不过它是Carlo Rovelli 写的 Black holes have more states than those giving the Bekenstein-Hawking entropy: a simple argument.

摘要如下:

It is often assumed that the maximum number of independent states a black hole may contain is \( N_{BH}=e^{BH} \), where \( S_{BH} = A/4 \) is the Bekenstein-Hawking entropy and \( A \) the horizon area in Planck units. I present a simple and straightforward argument showing that the number of states that can be distinguished by local observers inside the hole must be greater than this number.

这一篇将黑洞熵的地位提高了,黑洞熵的价值将因此被发掘。

发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注