考虑将 Massive Gravity加入Vaidya黑洞中算一下熵

前两天在家分别计算了Vaidya黑洞的apparent horizon和event horizon的熵,得到了结果。但是吴老师建议凑一下热点,将Massive Gravity加入到Vaidya中试试,于是今天(10月3日)在arXiv上看到两篇文章,有点意思。

 

第一篇和我正在算的Vaidya黑洞熵有关。最近Massive gravity很火,可以将它与Vaidya结合起来进行计算。

这篇文章名是 Vaidya Spacetime in Massive Gravity’s Rainbow,其中得到了Vaidya的度规,但我感觉有些繁琐。

于是看到了Holographic Thermalization and Generalized Vaidya-AdS Solutions in Massive Gravity 这篇文章,它给出了清晰的解和度规,计算起来很方便了。

第二篇与我所做的工作无直接关系,不过它是Carlo Rovelli 写的 Black holes have more states than those giving the Bekenstein-Hawking entropy: a simple argument.

摘要如下:

It is often assumed that the maximum number of independent states a black hole may contain is \( N_{BH}=e^{BH} \), where \( S_{BH} = A/4 \) is the Bekenstein-Hawking entropy and \( A \) the horizon area in Planck units. I present a simple and straightforward argument showing that the number of states that can be distinguished by local observers inside the hole must be greater than this number.

这一篇将黑洞熵的地位提高了,黑洞熵的价值将因此被发掘。

Comments

No comments yet. Why don’t you start the discussion?

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注