以下是维基百科的解释,原地址:https://en.wikipedia.org/wiki/K-function
In mathematics, the K-function, typically denoted K(z), is a generalization of the hyperfactorial to complex numbers, similar to the generalization of the factorial to the gamma function.
Formally, the K-function is defined as
It can also be given in closed form as
where ζ'(z) denotes the derivative of the Riemann zeta function, ζ(a,z) denotes the Hurwitz zeta function and
Another expression using polygamma function is[1]
Or using balanced generalization of polygamma function:[2]
- where A is Glaisher constant.
The K-function is closely related to the gamma function and the Barnes G-function; for natural numbers n, we have
More prosaically, one may write
The first values are
References[edit]
External links[edit]
以下是Wolfram的解释,内容来自http://mathworld.wolfram.com/K-Function.html
此处具体内容请查看原文
请使用手机”扫一扫”x