以下是维基百科的解释,原地址:https://en.wikipedia.org/wiki/K-function

In mathematics, the K-function, typically denoted K(z), is a generalization of the hyperfactorial to complex numbers, similar to the generalization of the factorial to the gamma function.

Formally, the K-function is defined as

It can also be given in closed form as

where ζ'(z) denotes the derivative of the Riemann zeta function, ζ(a,z) denotes the Hurwitz zeta function and

Another expression using polygamma function is[1]

Or using balanced generalization of polygamma function:[2]

where A is Glaisher constant.

The K-function is closely related to the gamma function and the Barnes G-function; for natural numbers n, we have

More prosaically, one may write

The first values are

1, 4, 108, 27648, 86400000, 4031078400000, 3319766398771200000, … ((sequence A002109 in the OEIS)).

References[edit]

External links[edit]

Weisstein, Eric W. “K-Function”MathWorld.

 

以下是Wolfram的解释,内容来自http://mathworld.wolfram.com/K-Function.html

KFunction

KFunctionReIm

KFunctionContours

此处具体内容请查看原文

 

 

 

请使用手机”扫一扫”x

发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注