知识+电脑技术:Lab色彩空间

简单来说结论:Lab色彩空间适用于描述任意颜色,不依赖于设备和介质以及使用方式,能更好的与其他色彩空间进行映射和转换。


Lab色彩空间(英语:Lab color space)是颜色-对立空间,带有维度L表示亮度,ab表示颜色对立维度,基于了非线性压缩的CIE XYZ色彩空间坐标。

Lab颜色空间是由CIE(国际照明委员会)制定的一种色彩模式。自然界中任何一点色都可以在Lab空间中表达出来,它的色彩空间比RGB空间还要大。另外,这种模式是以数字化方式来描述人的视觉感应, 与设备无关,所以它弥补了RGB和CMYK模式必须依赖于设备色彩特性的不足。 由于Lab的色彩空间要 比RGB模式和CMYK模式的色彩空间大。这就意味着RGB以及CMYK所能描述的色彩信息在Lab空间中都能得以影射。Lab颜色空间取坐标Lab,其中L亮度;a的正数代表红色,负端代表绿色;b的正数代表黄色,负端代表兰色。不像RGB和CMYK色彩空间,Lab颜色被设计来接近人类视觉。它致力于感知均匀性,它的L分量密切匹配人类亮度感知。因此可以被用来通过修改a和b分量的输出色阶来做精确的颜色平衡,或使用L分量来调整亮度对比。

Hunter 1948 L, a, b色彩空间的坐标是L, a和b。但是,Lab经常用做CIE 1976 (L*, a*, b*)色彩空间的非正式缩写(也叫做CIELAB,它的坐标实际上是L*, a*和b*)。所以首字母Lab自身是有歧义的。这两个色彩空间在用途上有关联,但在实现上不同。
两个空间都得出自“主”空间CIE 1931 XYZ色彩空间,它可以预测哪些光谱功率分布会被感知为相同的颜色(参见异谱同色metamerism),但是它不是显著感知均匀的。两个“Lab”色彩空间都受到了孟塞尔颜色系统的强烈影响,意图都是建立可以用简单公式从XYZ计算出来,但比XYZ在感知上更线性的色彩空间。感知上线性意味着在色彩空间上相同数量的变化应当产生大约相同视觉重要性的变化。在用有限精度值来存储颜色的时候,这可以增进色调的再生。两个Lab空间都相对于它们从而转换的XYZ数据的白点。Lab值不定义绝对色彩,除非还规定了这个白点。实际上白点经常被假定服从某个标准而不明确规定(比如ICC L*a*b* 值是相对于CIE标准光源D50)。
CIELAB使用立方根计算,而Hunter Lab使用平方根计算。。除非数据必须与现存的Hunter L,a,b值相比较,对新应用推荐使用CIELAB。
不像RGBCMYK色彩空间,Lab颜色被设计来接近人类视觉。它致力于感知均匀性,它的L分量密切匹配人类亮度感知。因此可以被用来通过修改a和b分量的输出色阶来做精确的颜色平衡,或使用L分量来调整亮度对比。这些变换在RGB或CMYK中是困难或不可能的——它们建模于物理设备的输出,而不是人类的视觉感知。
因为Lab空间比电脑屏幕、印表机甚至比人类视觉的色域都要大,表示为Lab的位图比RGB或CMYK位图获得同样的精度要求更多的每像素数据。在1990年代,这时的电脑硬件和软体通常受限于存储和操纵8位/通道的位图,从RGB图象到Lab之间的来回转换是有损耗的操作。对于现在常见的16位/通道支持,这就不是问题了。
此外,Lab空间内的很多“颜色”超出了人类视觉的视域,因此纯粹是假想的;这些“颜色”不能在物理世界中再生。通过颜色管理软件,比如内置于图象编辑应用程序中的那些软件,可以选择最接近的色域内近似,在处理中变换亮度、彩度甚至色相。Dan Margulis称,在图象操作的多个步骤之间使用假想色是很有用的。

参考文章:

百度百科:Lab色彩空间

Comments

No comments yet. Why don’t you start the discussion?

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注