数学:利普希茨连续(Lipschitz continuity)

维基百科:Lipschitz continuity(英文)


From Wikipedia, the free encyclopedia

For a Lipschitz continuous function, there exists a double cone (white) whose origin can be moved along the graph so that the whole graph always stays outside the double cone

In mathematical analysisLipschitz continuity, named after German mathematician Rudolf Lipschitz, is a strong form of uniform continuity for functions. Intuitively, a Lipschitz continuous function is limited in how fast it can change: there exists a real number such that, for every pair of points on the graph of this function, the absolute value of the slope of the line connecting them is not greater than this real number; the smallest such bound is called the Lipschitz constant of the function (or modulus of uniform continuity). For instance, every function that has bounded first derivatives is Lipschitz continuous.[1]

In the theory of differential equations, Lipschitz continuity is the central condition of the Picard–Lindelöf theorem which guarantees the existence and uniqueness of the solution to an initial value problem. A special type of Lipschitz continuity, called contraction, is used in the Banach fixed-point theorem.[2]

We have the following chain of strict inclusions for functions over a closed and bounded non-trivial interval of the real line:

Continuously differentiable ⊂ Lipschitz continuous ⊂ Hölder continuous,

where . We also have Lipschitz continuous ⊂ absolutely continuous ⊂ uniformly continuous.


维基百科:利普希茨连续(中文)

数学中,特别是实分析利普希茨连续Lipschitz continuity)以德国数学家鲁道夫·利普希茨命名,是一个比一致连续更强的光滑性条件。直觉上,利普希茨连续函数限制了函数改变的速度,符合利普希茨条件的函数的斜率,必小于一个称为利普希茨常数的实数(该常数依函数而定)。

微分方程,利普希茨连续是皮卡-林德洛夫定理中确保了初值问题存在唯一解的核心条件。一种特殊的利普希茨连续,称为压缩应用于巴拿赫不动点定理

利普希茨连续可以定义在度量空间上以及赋范向量空间上;利普希茨连续的一种推广称为赫尔德连续

性质

  • 符合利普希茨条件的函数连续,实际上一致连续
  • 双李普希茨(bi-Lipschitz)函数是单射
  • Rademacher定理:若为开集,符利普希茨条件,则几乎处处可微。
  • Kirszbraun定理:给定两个希尔伯特空间符合利普希茨条件,则存在符合利普希茨条件的,使得的利普希茨常数和的相同,且[2][3]

Comments

No comments yet. Why don’t you start the discussion?

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注