一维波动方程可用如下的方式推导:一列质量为m的小质点,相邻质点间用长度h的弹簧连接。弹簧的弹性系数(又称“倔强系数”)为k:
其中u(x) 表示位于x的质点偏离平衡位置的距离。施加在位于x+h 处的质点m 上的力为:
其中代表根据牛顿第二定律计算的质点惯性力,代表根据胡克定律计算的弹簧作用力。所以根据分析力学中的达朗贝尔原理,位于x+h 处质点的运动方程为:
式中已注明u(x) 是时间t 的显函数。
若N 个质点间隔均匀地固定在长度L = N h 的弹簧链上,总质量M = N m,链的总体劲度系数为K = k/N,我们可以将上面的方程写为:
取极限 N , h 就得到这个系统的波动方程:
在这个例子中,波速。
内容来自维基百科,查看更多请访问:http://zh.wikipedia.org/wiki/%E6%B3%A2%E5%8A%A8%E6%96%B9%E7%A8%8B